Mathematical model
To determine the electric field and the dielectrophoretic forces, the electric potential is solved for a defined space and set of boundary conditions that represent the electrode array. In this study phasor notation is used, with an arbitrary potential oscillating at frequency 
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 defined as (Morgan, Green 2003): 
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where
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, x is the coordinate, Re{} indicates the real part, and 
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, with VR and VI the real and respectively imaginary part of  the electric potential.  

The electric field is 
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 represents the corresponding phasor. For a homogeneous medium, the electrical potentials satisfy the Laplace equation: 
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Given the above, the dielectrophoretic force in our case can be written as:
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where 
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 is the induced dipole moment of the particle placed in a non-uniform electric field. For a homogeneous dielectric sphere of radius a, the induced dipole moment is given by:
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where 
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 is the Clausius–Mossotti factor, which, for a spherical particle, can be expressed as:
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with 
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 the absolute complex permittivity of the particle and the medium, respectively, and it depends on the dielectric properties of the particles and the medium, as well as the geometry of the particles. The complex permittivity is 
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 represents the electric permittivity and 
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 the conductivity of the dielectric. The time-averaged force acting on the dipole of the particle, per unit volume, is given by (Castellanos et al. 2003):


[image: image18.wmf]*

3

Re{()}

2

m

k

ew

=×Ñ

FEE

%

%%

,




(6)

where “
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” indicates the complex conjugate.  After some mathematical manipulation, it can be shown that the force in Eq. (6) comprises two independent contributions (the subscripts r and i denote the real and imaginary parts):
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The first term relates to an electric field which is non-uniform in magnitude but does not exhibit any phase variation. Equation (7) suggests that dielectrophoresis can be used as an effective method for separating particles, solely according to their dielectric properties and sizes, an important step forward in nanoparticle manipulation. In a dielectric medium, the direction of the DEP force is influenced by the polarizability of the particle, which depends on the permittivity of the particle and the suspending medium. This behavior is expressed by 
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; when the sign of 
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 is positive, the particle is more polarizable than its surrounding medium and its movement is oriented towards regions with the highest field strength. When 
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is negative, particles with polarizability less than that of the medium move towards the region with the lowest field gradient. These phenomena are known as positive dielectrophoresis (pDEP), respectively negative dielectrophoresis (nDEP). As 
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 has a complex dependence on the properties of the particle (permittivity, conductivity) and the frequency of the applied field, a particle can experience both positive and negative DEP forces based on the various possible combinations of the above variables. 
The second term of equation (7) is non-vanishing if the electric field has a spatially dependent phase, and the dielectrophoresis resulting from such an electric field phase gradient is known as “traveling wave dielectrophoresis” (twDEP). In traveling wave dielectrophoresis, the positive DEP force pushes the particles along the direction of the traveling wave while the negative DEP force pushes them in the opposite direction. 

In the following, the two components of the force will be considered separately and referred to as the DEP, respectively, the twDEP components of the force. Inserting the expressions for the phasor, the time-averaged force components from equation (7) can be expressed as (Green et al. 2002; Lungu et al. 2010): 
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and, respectively:
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The real part of the Clausius-Mossotti factor gives the DEP force in the direction perpendicular to the electrode array, while the imaginary part gives the twDEP force in the parallel direction.
In order to avoid extreme numbers in the numerical calculations, the potential is scaled with V0, the amplitude of the applied signal, and the distances are scaled with d, the distance between the center of the electrode and the center of the adjacent gap. 

In terms of dimensionless electric potentials V'R=VR/V0, V'I=VI/V0 and displacement x'=x/d, the time-averaged expressions for the force components become: 
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where 
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, respectively. 
The macroscopic behavior of a suspension of spherical particles in a dense and viscous fluid can be modeled considering the mechanical equilibrium between an external spatially dependent force 
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 and the Stokes drag. When the size of the particles, relative to the length L of the microchannel and the volume fraction 
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 of particles is small, the dynamics of the two-phase system can be expressed by the following system of equations (Holmes et al. 2003, Neculae et al, 2012):  
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Here u and v are the fluid and particle velocities, respectively, a the particle radius, η the viscosity of the fluid, t the time, j the particle flux, D the diffusion coefficient of the particles and 
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 denotes the dielectrophoretic external field. 

Using the scales of 
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(the initial average volume fraction) for the length, time, velocity and particle volume fraction, respectively, the problem is expressed in terms of dimensionless variables by the following system of equations: 
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The prime symbol above denotes the dimensionless quantities, 
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 a measure of the intensity of the external field which will be detailed in the next section.

In a typical set-up, the DEP chamber has electrodes placed on both the bottom and top surfaces as illustrated in Fig. 1. Let us consider a rectangular domain of sides (
[image: image46.wmf],2,

xyz

LLdL

=

) where a harmonic electric potential 
[image: image47.wmf]0

exp()

VVitqx

w

=-

%

 is imposed at the boundaries
[image: image48.wmf]yd

=±

. 

[image: image49.png]Va




            
Fig. 1 Typical DEP device: micro-channel with interdigitated top and bottom electrodes.
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 is the amplitude of the electric potential and 
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 is the wavelength of the traveling wave. By solving the Laplace equation 
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, and the uncharged sidewalls, one can obtain the analytical solution of the problem (Shklyaev, Straube 2008):
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and the final expression of the dielectrophoretic force becomes: 
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where 
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 is a parameter related to the intensity of the force field, corresponding to term F0 mentioned above, 
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 is the so called dimensionless wave number. The first component of term 
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 represents the dimensionless twDEP force, while the second component is the dimensionless DEP force.
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